2014年12月4日 星期四

Precision and recall


Precision and recall




Definition (classification context)


For (binary) classification tasks, the terms
true positives
true negatives
false positives
and false negatives 

compare the results of the classifier under test with trusted external judgments. 




Precision and recall are then defined as:[5]


\text{Precision}=\frac{tp}{tp+fp} \,
\text{Recall}=\frac{tp}{tp+fn} \,
A measure that combines precision and recall is the harmonic mean of precision and recall, the traditional F-measure or balanced F-score:
F = 2 \cdot \frac{\mathrm{precision} \cdot \mathrm{recall}}{ \mathrm{precision} + \mathrm{recall}}
Precisionrecall.svg
"Precisionrecall" by Walber - Own work. Licensed under CC BY-SA 4.0 via Wikimedia Commons.

沒有留言:

張貼留言