2015年4月17日 星期五

ryProb008_1 Chebyshev's inequality

Chebyshev's inequality



    \Pr(|X-\mu|\geq k\sigma) \leq \frac{1}{k^2}.

pf:
\begin{align}
\Pr(|X-\mu| \geq k\sigma) &= \operatorname{E} \left (I_{|X-\mu| \geq k\sigma} \right ) \\
&= \operatorname{E} \left (I_{\left (\frac{X-\mu}{k\sigma} \right )^2 \geq 1} \right ) \\[6pt]
&\leq \operatorname{E}\left(\left({X-\mu \over k\sigma} \right)^2 \right) \\[6pt]
&= {1 \over k^2} {\operatorname{E}((X-\mu)^2) \over \sigma^2} \\
&= {1 \over k^2}.
\end{align}
kMin % within k standard
deviations of mean= 1 - 1/k**2 
if X is Gaussian
10%68%
250%
1.555.56%
275%95%
388.8889%99.7%
493.75%
596%
697.2222%
797.9592%
898.4375%
998.7654%
1099%

沒有留言:

張貼留言